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A simplified mechanism of RNA-replieation by a specific polymerase is 
analysed by direct numerical integration and by means of the "quasiequili- 
brium approximation". The quasiequilibrium approximation is formulated in 
precise mathemat,ieal terms for three simple, two step reactions which describe 
approach towards equilibrium, irreversible transformation and unlimited 
growth. 

( Keywords : Polymerization ]cinetics ; Quasiequilibrium ; R N A-replication ) 

Modelluntersuchungen zur R NA  Replikation, i. Annahme eines Quasigleieh- 
gewichts und Analyse eines vereinfachten Mechanismus 

Ein vereinfachter Meehanismus der RNA-Replikation dureh eine spezifi- 
sche Polymerase wird durch direkte numerisehe Integration und mit Hilfe der 
Annahme yon ,,Quasigleiehgewieht" analysiert. Die Quasigleiehgewiehtsan- 
nahme wird an Hand yon drei Beispielen einfaeher Zweistufenreaktionen 
mathematisch definiert. Die drei Beispiele beschreiben: (1) die Ann/~herung an 
den Gleiehgewichtszustand, (2) den irreversiblen Abbau und (3) das unbe- 
sehriinkte Waehstum einer Verbindung. 

1. Introduction 

Polynucleot ide  r e p l i c a t i o n ~ n  vitro and in vivo is an enormous ly  
complicated m a n y  step polymer iza t ion  process. Commonly ,  two 
catalyst~, an enzyme and a polynucleot ide  t empla te  are involved***. 

** Dedicated to Prof. Dr. G. Kainz on the occasion of his 60th birthday. 
*** Exceptions of this rule are enzyme-free template induced oligonucleo- 

tide synthesis I and template-free enzyme catalyzed "de novo" RNA syn 
tlwsis~ 4. 
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Despite the complexity of the problem the first extensive kinetic 
studies were reported more than ten years ago already by Spiegelman 5. 
In his investigations R N A  of the bacteriophage Q~ and the template 
specific enzyme Q~ R N A  polymerase were used. More recently, system- 
atic kinetic studies were performed on the replication of synthetic 
polynucleotides--poly (A), poly (U) polymerized by RNA polymerase 
from E. coli in a stirred flow reactor6--as well as on the O~ system3, 4. 
These kinetic investigations are essentially consistent with a simplified 
many step mechanism (Fig. 1) which will be the subject of the analysis 
reported here. 

11 E+I 2 El 2 

h2r/Z ~"~glr f2d/ /  
~ /  h2d gld "kk4\ k-// f2r ~ kl 

I2EI I 11 + E + 12 IIEI 2 

flr / king 2 d hld//I 

E 11 12 E + 11 
Fig. 1: A cyclic mechanism of R2VA replication 

The mechanism of RNA replication shown in Fig. 1 consists of two 
classes of reactions: (1) the binding of polynueleotides to proteins or 
polynucleotide-protein complexes and the dissociation of these poly- 
nueleotide-protein-complexes and (2) the polymerization process as 
such. All reactions of class (1) are considered to be reversible whereas 
the reactions of class (2) are assumed to occur irreversibly for practical 
purposes. This condition is very well fulfilled in realistic biological 
systems and in testtube experiments when the concentration of pyro- 
phosphate is sufficiently small to prevent R N A  degradation by pyro- 
phosphorolysis. 

At the same time the investigations reported here aim towards a 
second goal: the proposal and test of an approximative analysis of 
complex many-step reaction mechanisms. This procedure which we call 
characteristicly "quasiequilibrium approximation" is not new. I t  has 
been used frequently in chemical relaxation kinetics 7 and is based on 
the assumption that  some reaction steps proceed at faster rates than 
the others. Recently, the quasiequilibrium approximation has been 
applied also to autocatalytically growing systemsS, 9. In this paper we 
supplement a mathematical analysis which justifies the generalization 
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of the approximat ion  to irreversible reaction steps and to conditions 
where no s ta t ionary  states exist. In a way the quasiequilibrium 
approximat ion  is complementary  to the s teady s tate  approximat ion  
which was analysed recently by  Noyes lo. He proposed a very general 
procedure which allows to check the val idi ty of the s teady s tate  
assumption in complex many-s tep  reaction mechanisms. This approxi-  
marion is based on the assumption tha t  reaction intermediates are 
present at  small and practically constant  concentrations. Clearly, this 
method cannot be applied to autoeata lyt ieal ly  growing systems in 
which all components  including the intermediates  grow. 

2, The Quasiequi l ibrium Approximat ion  

In  this section we shall introduce and s tudy the quasiequilibrium 
approximat ion  by  means of three exact ly  solvable examples. 

2.1. Approach Towards Equilibrium 

We star t  with two consecutive first order reactions: 

A ~.-- B ~ X . -  (1) 

k21 k32 

Following the analysis by Eigen and DeMaeyer 7 we introduce 
deviations from equilibrium concentrations as variables e, ~ and 
~([A] = a, [B] = b, [XJ = z and hence the conservation relation 
a + b + x = c o = const, holds): 

= a - - a ,  ~ = b ~  and ~ = x - - ~  (2) 

F rom mass conservation we obtain a + ~ + ~ = 0. The equilibrium 
concentrations are denoted by  bars:  

Co KlcO KIK2Co 
5 = . b = and 2 = (3) 

I + KI + KIK2" I + KI + K1K2 I + KI + KIK2 

The equilibrium constants  are defined in conventional manner  as 

K1 = kle/k21 and K s =/c2a/k32 (4) 

The dynamics of the system is described by the linear differential 
equat ion 

d~ 
- -  ~ = (]C12 ~- ]C21 ) ~ - - k 2 1 ~  (5 a)  

dt  

d~ 
- ~ = - - k ~ 3 ~  (k~3+k3~)~ (55) 

dt  
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which can be wri t ten  mos t  convenient ly  in vector  no ta t ion  

= A y (5) 

Herein  y is a column vec tor  (~, ~) and A the  2 × 2 matr ix.  

\ - - k ~ 3  2 ' 

For  convenience we in t roduce  re laxat ion t imes for the individual  
react ion steps 

1 ~'1 : k12 + k21 and ~2 1 = k23 + k32 (6) 

The solution curves of (5) are of the general form 

(t) = Cll e xlt -~ c12 e x2t (7 a) 

(t) = c21 e ht -+- C22 e zd (7 b) 

The reciprocal  t ime cons tants  Xl, X2 are s imply the eigenvalues of A. 
In  order  to calculate the  coefficients %- we need the  eigenveetors of  A 
and the initial condit ions ~ (0) and ~ (0). Eigenvalues  and eigenveetors 
are de termined  by  the mat r ix  equa t ion  

A U =  U A o r A ' =  U - 1 A U  (8) 

where A is a diagonal  ma t r ix  conta in ing the eigenvalues 

and U contains  the corresponding eigenveetors  of A as columns 

kUm u~2/ 

Now, we are in a posit ion to write down an expression for the 
coefficients %.: 

Cij = Ui] {(U-1)jl ~(0) -~- (U-1)j2 ~(0)} (9) 



Model Studies on RXA-Replieation 241 

The elements of the inverse matr ix  of U are simply given by  

U - - 1  

U21 ~ /  

A 

(~0) 

with A = gl,g22--u,2u2,. Wi thout  losing generali ty we may  put  
Ul, = u22 = 1 and derive the following expressions for the coefficients of 
equation (7): 

1 
~- {~ (0)--7~g,2 ~ (0)} (9 a) 

ql  1 - -  %2 %, 

C12 = {--%21 0¢ (0) q- ~ (0)} (9 b) 
1 - -  U,2 U21 

U21 
%, - - -  {~ (0) u12 ( ( 0 ) }  (9  c )  

1 - -  u , 2  % ,  

c22 - {--u2~ ~ (0) + ~ (0)} (9 d) 
1 - -  u , 2  u.~, 

In  practice the eigenvalues of A are obtained as the roots of a 
quadratic equation : 

X l , 2 = - 1 ~ 7 - ' ÷ : 2 ~ + ( % - - '  ~21) N/ 1+(~- -*__ . - -1 ,2 /  (11) 
2 [  -- 1 ~2 / )  

The eigenveetors are calculated conveniently from the equations 

k~3 + ]c32 + X2 
%2 = (12 a) 

]~23 

/q2 + k21 + ),1 
%1 = (12 b) 

k21 

Now, we apply  the quasiequilibrium approximat ion  and assume 
tha t  one reaction step, let us say the step A ~.~ B proceeds much faster 
than  the other. Accordingly, we have 

--1 k12, k m >  k2a, ka2 and hence z~-I > ~2 • 
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Then, the eigenvalues of A according to equation (11) are close to* 

[ ]% K1 . 
xQ= --~1 1 and X~ = - - ~ 1 ~ - ~ 1  + k32) (~3) 

and the corresponding eigenveetors are given by 

U Q = 1 K (14) 

The solution curves of (5) are of the form 

and 

~Q(t) ---- ~ (0) 'exp (xQt) 
1 + K  1 

(0)-exp (X~t) 

~e (t) = ~ (0) "exp (xQt) 

(]Sa) 

(~5b) 

Equations (13) to (15) simply express the fact tha t  in accord with 
our assumptions the process A ~ -B  occurs instantaneously and is at 
quasiequilibrium when reaction B ~.~ X progresses. 

The establishment of quasiequilibrimn can be verified by a straight 
forward calculation of the ratio 

K1 
~Q(t) ( 1 '  ~Q(t)'~ ~(O)exp(xQt)+I+K1 ~(O)exp(xQt) 

- = (16) 
(o) exp (x~t) - -  ~ (0) exp (x~t) 

1 + K  s 

For t } I xQI 1 we can neglect the first terms in numerator  and 
denominator  and find 

~Q (t) _-- Ks t~> Ix~l ~ Q ( t ~  (16a) 

Thus, the quotient ~/~ becomes independent of initial conditions 
and approaches K1 for t >) ] X Q ] -1. I t  stays then at this value during the 

* By the superscript "Q" we denote the results obtained within the frame 
of the quasiequilibrium approximation. 
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approach towards final equilibrium which occurs exponentially with the 
time constant I xQ[-1 (we verify immediately that  }/~ = K 1 implies 
b/a = Kt) .  

What  happens if the quasiequilibrium condition is not  fulfilled 
perfectly but  still [Xl I >> IX2 L holds ? By means of equations (7), (9) and 
(12) we find 

t>>lXl 1 1 ~  -- = K  (17) 
(t) k23 + k32 + X2 

Thus ~/~ and, hence, also b/a approach a constant value as before, 
but  this value differs from K 1. We shall come back to this question 
when we discuss the next  example (section 2.2). 

2.2. Irreversible Consecutive Step 

In the second example we consider the slower reaction step to be 
irreversible: 

k 
A ~ B -~ X (18) 

k21 

Formally,  this reaction system is obtained from the previous 
example in the limit/c32 -~0 (and by putt ing k23 =/c). Thus a (t) and b (t) 
do not  approach some finite equilibrium value but  vanish at infinite 
time 

lim a = 0 ,  lim b = 0  and lim x = %  (19) 
t--* ce t-~o9 t - ~  

By analogy with the previous example we define new variables: 

= a, ,3 = b and ~ = x - - c  o (20) 

The differential equation is of the same type as (5) with a matrix A 
defined by 

The eigenvalues of A in this example are 

Xl,~- ~ ~VI+k+(~V ' k) ~+(q_, ~)~j (22) 
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and the coefficients of the eigenvectors are given by 

1 k +)~2> 
U = z ~ l  + xl k (23) 

k21 1 

Applying the quasiequilibrium approximation for A ~- B to the two- 
step mechanisms (18) we find 

k K  
--1 and X~-  K + 1 x? = --~ (24) 

(since we have just one equilibrium constant in this example we drop 
the index: K = k12/km). The eigenvectors are the same as in the 
previous example 

g Q = 1 (25) 

0 1 

and, accordingly, the solution curves in this case are indentical with 
those given in equation (15). 

In order to s tudy the approach towards a possibly existing quasi- 
equilibrium we define a time dependent ratio of concentrations 

R (t)  - a ( t )  o: ( t )  ~ ~ ( t ) /  

Under the assumption of the quasiequilibrium approximation this 
ratio is given precisely by equation (16). Thus, for times substantially 
longer than the reciprocal first eigenvalue, t>> Ix~1-1, the ratio 
approaches exactly the equilibrium constant K:  

b (t) 
t>> Ix~l I ~ _ _ = K  (27) 

a( t )  

Let us consider now the complete system (18). We may still assume 
tha t  the two eigenvalues xl and X2 are substantially different. The ratio 
of concentrations, b/a, can be expressed in most general form by the 
expression 

(cll + c21) e~'lt + (c12 + c~2) ex2t 
R (t) = (28) 

Cll exit '~ ~12 e~t 
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At time long enough, t >> I Xi 1-1, R (t) approaches a constant value 
(K) which is independent of initial conditions: 

t > I × l L - ~ R ( t )  = / ~ -  (29) 
C12 ~ ~t12/ ]g -~- ~'2 

K, however, need not coincide with the true equilibrium constant K. 
We may call R therefore an effective or quasiequilibrium constant. 

nm~ 

10 

7 

6 

5. 

/, 
, k 

10 20 

Fig. 2. The dependence of the effective equilibrium constant K on the r~te 
konstant  k. We show two examples of simple two-step mechanisms as analysed 
in section 2.2 and 2.3: (full line), the exponentially growing system 
(32) and its linearization according to equation (40) and (broken 
line), the irreversibly decaying system (18), the linearization of which is 
described in equation (31). For  ] coo  the effective equilibrium constant 

converges smoothly towards the true value of K 

Indeed, we find a systematic deviation towards smaller values, K < K, 
with increasing values of the rate constant k (Fig, 2). This finding can 
be verified analytically : We use a power series expansion for the square 
root in equation (22) and collect all terms up to the order k2/zl -e. For the 
eigcnvalues X2 we obtain 

×2 ~- - -  k + ( 3 0 )  
I + K  
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which inserted into (29) yields 

"r 1 + ]c]~12 \ ~r 1 
(31) 

For  small values of k the effective equilibrium constant  K thus 
decreases linearly with the r a t i o / c / ~ j  1 which can be verified easily by  
means of Fig. 2. 

We have seen tha t  t h e  concept of a quasiequilibrium can be 
extended to mechanisms containing irreversible reaction steps. Then, 
the concentrations of reactants  involved in the quasiequilibrium soon 
reach constant  ratios and decrease synchronously.  In  case of the simple 
two-step mechanism it was possible to derive an analytical  expression 
for the effective equilibrium constant  K which converges asymptot i -  
cally to the true constant K at vanishing values of ]c. 

2.3. Exponentially Growing System 

In  our third example we make an a t t e m p t  to generalize the concept 
of a quasiequilibrium to an autoeata lyt ieal ly  growing system. The most  
simple example of this type consists of a reversible first order reaction 
superimposed by  catalytic action of B on the format ion of A : 

/c21 
/c 

B + X  -~ A + B  (32b) 

We assume pseudo first order conditions for reaction (32 b); this 
means tha t  the concentrat ion of X is constant  due to some buffering 
mechanism. For  short we can write: 

A B (32) 
I /c21 

k 

In  this simple unconstrained reaction the concentrations a (t) and 
b (t) grow without  limit. They are determined by  the following linear 
differential equation : 

= k12 a + (k~l + k). b (33 a) 

b = kl~a--k21b (33b) 
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I t  is again of the same type as equation (5). The matr ix A in this 
ease is defined by 

A=( k12 k21 -~- k ~ 

\k12 --/C21 / (33 c) 

The eigenvalues of A by the same token are obtained as the roots of 
a quadratic equation 

1{ %// 4k~2k] 
1 1 +  1 (34) 

For k > 0 we have always one positive and one negative root. This 
means tha t  the differential equation is characterized by one exponen- 
tially decreasing and one exponentially growing mode. The correspond- 
ing eigenvectors are given by the matr ix 

1 ]~21 }~2 t 
U = ]c12 + xl ]c12 (35) 

\ k21 + k 1 

We may apply the quasiequilibrium approximation for A ~ B  to 
our mechanism and obtain 

K x~ = --~V 1 and ~ = k - -  (36) 
K + I  

The eigenvectors in this case are of the form 

(37) 

By a straight forward calculation we can verify tha t  the ratio b/a 
converges to the equilibrium constant K. The approximation is good 
for periods longer than the reciprocal first eigenvalue : 

b (t) 
t~> Ix~l- l~  = K  (3S) (t) 
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As in the previous example we release the quasiequilibrium approxi- 
mation. The second eigenvalue up to terms of the order k2/ '~ 2 is given 
by 

K ]g --/g12 (39) X2 - K + I  

As in the foregoing case we can define and calculate an effective 
equilibrium constant 

b ( t ) = _ ~ = K  1 K --1 + . . .  
t >> Ix 11-1 ~ a (t) ~1 (40) 

Thus, K decreases linearly with the ratio k K/.:~ -1 for small values of 
k which again can be easily verified by inspection of Fig. 2. Note, tha t  
the tangent  of this linear dependence is different from that  in the 
preceding example by  a factor K. 

I t  is of a certain importance to stress the fact tha t  the analysis of the 
growing system is very general. The ratio b/a becomes constant in any 
case : since x 1 and ;~2 are of opposite sign the contribution of the second 
eigenvector will always outweigh tha t  of the first at times longer tha t  
the period which is necessary for almost complete decay of the first 
mode. Again we were able to derive an analytical expression for the 
effective equilibrium constant K, which represents this constant ratio 
b/a. [( converges asymptotical ly to the value of the true constant K for 
vanishing k. 

The procedure described here can be extended to more complex 
many step equilibria preceding a slow reaction step. The results 
obtained thereby will be reported elsewhere 11. A specific example of a 
successful application of the quasiequilibrium approximation to a 
complex many step mechanism is described in the forthcoming sections. 

3. A Mechanism of R N A  Replication 

The simplified mechanism of R2VA replication which will be an- 
alysed now is shown schematicly in Fig. 1. Accordingly we distinguish 
free RAtA m o l e c u l e s ~ l u s  and minus strand denoted by 11 and 12 
respectively free enzyme molecules E and various polynucleotide 
protein complexes. In particular, we have the complexes E" I1 and E" Ie 
which are ready for the synthesis of the complementary strands. RAtA 
polymerization is considered to be a single, practically irreversible and 
slow "over all" reaction step. At the end of the polymerization reaction 
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a ternary complex, I a- E - t  1 or I x • E ' I  a respectively, is formed. These 
ternary complexes are assumed to dissociate in sequence into the 
complexes I a • E or 11 • E and finally into free enzyme and polynucleotide 
molecules. The newly synthesized RNA-molecules  leave the ternary 
complex first~. I x • E differs from E- I x as well as I a • E differs from E- Ia 
because the 3' end of the polynucleotide is at tached to the enzyme in 
E '  I x and E" Ia whereas the 5' end is bound in 1,he other two complexes, 
I x-E and I2"E. The latter two complexes, hence, are not ready for 
replication. Enzyme reactivation can occur either via a rearra.ngement 
of the complex--interconversion of 3' and 5' end of the RAtA--or  via a 
dissociative mechanism. We refer to the latter case. For further details 
see Ref. 4. Thus both polynucleotides have to fall off before the enzyme 
can start  R N A  polymerization anew. 

The individual reaction step as well as the symbols used for the rate 
and equilibrium constants are: 

[int- E fl-arr E "I  1 ' F1 jlr 
fld fld 

(41) 

I a + E  ~ E ' I  a; Fa=f2r-- (42) 

f2d fad 

-~- I I ' E  

glg 

glr 
~1 ~ " ~ - -  (43) 

gxd 
11 + E  

.-- I2"E 

gad 

g2r 
G2 = - -  ( 4 4 )  

gad 
Ia+E 

hlr hlr 
I 2 " E + I 1  ~- I x ' E ' I 2 ;  H x -  

hid hld 

h2r h2r 
I x ' E + I 2  ~ I a ' E ' I  x; H a -  

h2 d ]~2d 

4 k x 
E ' I a +  ~ , l , 1 ) A x - '  I x . E . I  a 

k=l  

(45) 

(46) 

(47) 

4 
E ' I  1 -~- 2 ~2)nx  ~'~ 12' E '  11 

)x=l 
(4s) 
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The  las t  two  reac t ions  are  a s sumed  to p roceed  i r revers ib ly .  Ax, 
= 1 . . . . .  4, a re  t he  four  nucleos ide  t r i p h o s p h a t e s ,  ATP, UTP, GTP 

and  CTP, ~1) and  ~s) a re  the  co r r e spond ing  s to i ch iome t r i c  coefficients.  
W e  a s sume  t h a t  t he  concen t r a t i ons  of nucleos ide  t r i p h o s p h a t e s  are  
buf fe red  and  hence,  t h e y  do n o t  e n t e r  as va r i ab l e s  in to  t he  r a t e  

equa t ions .  
F o r  the  v a r i a b l e  c o n c e n t r a t i o n s  of t he  i n d i v i d u a l  molecu la r  species 

we use  : 

[I1] = xl,  [I~] = x2, [E ]  = e (49) 

[E  "I1] = Yl, [ E '  I2] = Y2, [I1 ' E l  = zl, [ I  2 - E l  = z2 (50) 

[I2" E ' I l J  = wl, [ I1 '  E ' I ~ J  = w 2 (51) 

A d d i t i o n a l l y ,  we def ine  t he  fo l lowing t o t a l  c o n c e n t r a t i o n s :  

x ° = xl  + Yl + zl + wl + w2 (52) 

x ° = x2 + Y2 + z2 + wl + w2 (53) 

e0 = e + Yl + Y~ + Zl + z~ + w I + w 2 (54) 

4. Ana lys i s  of the Equilibrium Between the Free Macromolecu les  and  
Complexes 

I n  o rde r  to  s t u d y  the  equ i l i b r i um of  complex  f o r m a t i o n  we p u t  
kl = k2 = 0 and  i nves t i ga t e  the  s y s t e m  of  n ine  va r i ab l e s  u n d e r  t he  

cond i t i on  

F r o m  (55) we o b t a i n  six l inea r ly  i n d e p e n d e n t  equa t ions  

Yl ---- F1 ~21 ~ (56) 

~ = F2 ~ ~ (57) 

~1 = G1 ~1 ~ (58) 

~2 = G2 ~2 ~ (59) 

wl = H2 x2 zl (60) 

w2 = / / 1  Xl ~ (61) 

W e  use t h e m  t o g e t h e r  wi th  the  t h ree  conse rva t ion  laws (52) to  (54) 
to  e v a l u a t e  t he  n ine  equ i l i b r i um concen t r a t i ons  ;~1~ X2, Yl, Y2, ~1, ~2, 7~)1~ 
w2 and  ~ as func t ions  of t he  t o t a l  c o n c e n t r a t i o n s  x °, x ° and  %. T h e r e b y ,  
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we apply a combined analytical  and numerical  approach used previous- 
ly for simple two step equilibria le. 

Successive elimination of variables somewhat  tedious but  straight  
forward leads to two equivalent  equations of fifth degree13 : 

g5X~ -~- g4Xl 4 -}- (/'3 ~3 -}- agX~ -1- glXl q- gO = 0 

and 

(62) 

(63) 

Herein, the coefficients are functions of the three total  concen- 
t rat ions and the following three combinations of equilibrium constants 

A = F1 + G1 (64) 

B = F2 + G2 (65) 

T = F1G 2 + F2G 1 (66) 

Note, tha t  the coefficients b~ can be obtained from %, k = 0 . . . . .  5, 
by  substi tut ion of x °, x °, A and B for x°2, x°, B and A and vice versa. 

a 0 = (x°B) 2 and b 0 = (x°A) 2 (67 a) 

gl = xi°{B D°(AB + 2~) + ~°(AB T)--% (AB + T) + A--2B] T) 

and (67 b) 

bl = x°2{A Ix ° ( A B - - T )  + x°(AB + 2 T ) - - %  (AB + T ) - - 2  A + B] - -  T} 

c~ = x°[x°T (T + 2 AB)- -eoT (T + 3 AB) + A B  ( A - -  2 B ) - -  T (A + $ B)J + 

+ x° [ (%-- . ° )T  + B] (T--AB) + 
+ e o [ e o A B T + A B ( B  A ) + T ( A + B ) ] +  
+ B ( B - - A ) + T  

and (67 c) 

b2 = Xl°[(eo x ° ) T + A J ( T - - A B ) +  
+ x ° [ x ° T ( T + 2 A B ) - - e o T ( T + 3 A B ) - - A B ( 2 A  B ) - - T ( 4 A  +B)]  + 
+ e o [ e o A B T + A B ( A - - B ) + T ( A  + B ) ]  + 
+ A (A- -B)  + T 

a 3 = x ° [ ( x ° - - 2 % ) A T - - 2 ( T + 2 A B ) J  T + 
+ x ° T ( T - - A B )  + c o T ( c o A T +  T + 3AB)  + 
+ A B ( B - - A )  + T(A + 2B) 

17 31ona~shefte f/Jr Chemic, Vol. 113/3 
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and (67 d) 

ba = x°~T (To - -  A B )  + 
+ x 2 [ (x2- -2  % ) B T - - 2  (T + 2 A B ) ]  T + 
+ e o T ( e o B T  + T + 3 A B )  + A B ( A - - B )  + T ( 2 A  + B) 

a4 = [ ( e o - - X ° ) 2 A T  + T + 2 A B J T  

and (67 e) 

b 4 = [ ( e o - - X ° ) 2 B T  + T + 2 A B ]  T 

a 5 = A T  ~ and b5 = B T  ~ (67f) 

The conventional method of evaluat ion--calculate  either 21 from 
equation (62) or 22 from (63) and determine the remaining variables 
from equations (56) to (61) as well as (52) to (54)--fails here because of 
numerical difficulties. The equation 

22/~ (%--*°  + 2 ~ ) -  ( . ° - -  2~) 
Xl = A ( x 2 0 - - ~ ' 2 ) - - 2  2 T (% - - x  0 + 22) (68) 

and the corresponding equation for 22 are particularly ill-conditioned in 
many cases. The generally applicable formalism which we used in our 
calculations consists in a different strategy: all roots of both equations 
(62) and (63) are computed. Solutions for xl xl (k), k = 1 . . . .  ,5 - -  are 
assigned to the corresponding roots for x~ by means of the relation. 

x 0  ~(k) 
~ x,~)~v ( A +  T ) ; k = l  . . . . .  5 (69) 

Each correctly assigned pair (x~V), x~ ~)) is characterized by a certain 
value Q(~). I f  Q(k) is the same for two pairs the unique, final assignment 
is made with the aid of the equation 

x°(1 + x~k)A + x ~ ) B  + x~)x~k)T) - 

- - @  [1 + .i~)A + x(~ ~)~ -~- x (~)x(~), 2 T - -  ~oO~ (B + xi ~) T)] = 0. (70) 

Equilibrium is unique. Hence, there is only one physically meaning- 
ful solution which fulfils the condition tha t  all nine concentrations are 
positive : 

~1 > 0 , ~ 2  > 0 , . ~ > 0 , y 2 - > 0 , ~ - > 0 , ~ 2  > O , * ~ > O , ~ > - O a n d ~ > - O .  
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Fig. 3. The  equi l ib r ium mix tu re s  of complexes and  free macromolecules  
according to equa t ions  (49) (61). The  values  of the  ind iv idua l  equi l ib r ium 
cons tan t s  are:  F 1 = F 2 = G 1 = G 2 = H1 = H2 = 1. We  plot  re la t ive  eoncen- 

or  Xl/Xl, yl /x t e t c .  o r  t ra t ions ,  e.g. ~/eo, ~l/eo, ~2/eo etc. - 0 - 0 22/x °, ~12/x ° etc. 
respect ively.  The  conserva t ion  re la t ions  (52) to  (54) enable  us to sum up all 
re la t ive  values  yielding 11 E a c h  equi l ib r ium concen t r a t i on  is shown as the  
ver t ica l  d i s tance  be tween  two p lo t t ed  lines. The  t o t a l  concen t ra t ions  appl ied 

0 0 are A:  x l = x 2 = l ,  1 0 - 3 < e o < 1 0 5 ,  B:  x ° = e o = l ,  1 0 = 3 < % < 1 0 5  and  C: 
o = 1, 10 -a < x ° < 105. Due to the  pa r t i cu la r  choice of the  equi l ibr ium X 2 = e 0 

cons tan t s  (equal to un i ty )  all complexes  are p resen t  a t  comparab le  amoun t s .  
Note  t h a t  the  plots  aga ins t  x ° and  x ° become ident ical  in case we in te rchange  

the  indices "1" and  "2" 

I 7 "  
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Fig. 4. The equilibrium mixtures of complexes and free macromolecules 
according to equations (49) (61). The values of the individual equilibrium 
constants are: F 1 = F 2 = G1 = G2 = H1 = Ha = 103 (for a description of the 
plots see Fig. 3). The total concentrations applied are A: x°=x  °= 1 

3 0 0 3 0 0 * ~ ' 10 <eo<103andB:x2(xl)= l, eo=3,10- <Xl(X2)<l (~(wemakeuseof the  
fact that the plots against x 0 and x ° are identical in case we interchange the 
indices "1" and "2" since F 1 = F2, G1 = G2 and H1 = H2, and save the second 
sketch). Due to the high values of the equilibrium constants all enzyme is 
bound in the ternary complexes at excess polynucleotide concentrations. The 
same applies vice versa for the polynucleotides at excess enzyme concentration. 

Here we find binary and ternary complexes at comparable amounts 

Log x~(x~) 
J I ) 
3 4 

These re la t ions  are used to pick ou t  the  equ i l ib r ium s ta te  in the 

ac tua l  numer ica l  computa t ions .  
Some character is t ic  examples  of equ i l ib r ium mix tures  of polynuc-  

leotides, enzyme and  their  complexes are shown in the Figs. 3 to 6. I n  
our first example  all equ i l ib r ium cons tan t s  are chosen equal  un i t y* .  

Hence,  all molecular  species are present  in equal  a m o u n t s  when  the 
to ta l  concen t ra t ions  are low and  x ° = x °. The different  graphs  in Fig.  3 
can be in te rp re ted  easily by  the  inf luence of excess E,  11 or Ie on 
complex format ion .  E x a m p l e  2 (Fig. 4) differs f rom the first case by  
larger bu t  still equal  equ i l ib r ium cons tan t s :  F 1 = F 2 = O 1 = 
= G2 = H1 = H2 = 103 [c-1]. Therefore,  higher aggregates are s t rongly  
favoured  a l ready at  low concent ra t ions .  I n  the  r ema in ing  two examples  
we show the  inf luence of different  equ i l ib r ium cons tan t s  on the  
d i s t r i bu t ion  of molecular  species (Figs. 5 and  6). 

* Throughout this contribution we use arbitary concentration [c] and time 
units It]. According to equations (41) to (48) all equilibrium constants are of 
dimension [¥-1], all recombination rate constants of dimension [t-lc-1], all 
dissociation rate constants as well as k 1 and k~ of dimension It-t]. 
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Fig. 5. The equil ibrium mixtures  of complexes and free maeromoleeules 
according to equat ions (49)-(61). The values of the individual equil ibrium 
constants  are: F 1 = GI = H~ = 10 and F 2 = G2 = H1 = 100, i.e. all equil ibrium 
constants  referring to one part icular  cycle in Fig. 1, replication of plus or minus 
strand, are chosen equal  (for a description of the plots see Fig. 3). The to ta l  
concentrat ions applied a r e A : x  0 =  1 x 0 =  1, 10 - 3 < e  0<105 B x 0 =  1 % = 3 .  

3 0 5 0 • ' ~ 3 0 ~ ~ - ~ ' 10- < x l < 1 0  and C: x ~ = l ,  e o = 3 ,  10 < x 2 < 1 0 5 .  The most  Impor tant  
feature of this ease concerns the ratio of the two ternary complexes ~l/iv2. A 
straight forward calculation yields ~l/~e = (GI"H~)/(Ge'H1) = 10 2 in our example 

Hence we find lit t le 12" E ' I  1 only at  equil ibrium 



256 Br ig i t t e  Gassner  and  P. Schus te r :  

e o 
t 

W 2  

Y2 

Y~ 

-2 
I 

-1 
l I I 

1 2 3 
A 

1 

log eo 0 
I I I 

4 -2 -1 

Z l  

I 

1 
B 

/ 

log e o 
I I 

3 ~. 

W2 

y, cy~ 

, ~ 1 ( ~ 2  ) 

tog x°(x °) 

-2 -1 0 1 2 3 4 
£ 

Fig. 6. The  equi l ib r ium mix tu res  of complexes  and  free macromolecules  
according to equa t ions  (49)-(61). The  values  of ind iv idua l  equi l ib r ium cons t an t s  
are:  F1 = F2 = 104 , G1 = G2 = 102 and  H1 = H2 = 1 (for a descr ip t ion  of the  
plots  see Fig. 3). The  t o t a l  concen t r a t ions  appl ied are A:  xClFx O= 100, 
~o-~  < eo < 105, . :  x ° = 10o,  x ° = ~0-~,  l o - 3  < eo < 105 a n d  C: O ( x ~ )  = ~0~, 
e o = 50, 10 ~ < x 0 (x 0) < 105 (for the  s y m m e t r y  be tween  "1" and  "2" see Fig. 4). 
This  choice of equ i l ib r ium cons tan t s  d is favours  s t rong ly  complexes I1" E and  

12" E.  Hence,  Yl and  5e are de tec tab le  only  unde r  ex t r eme  condi t ions,  e.g. B 
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5. Analysis of the Growing System 

In this section we shall analyse the differential equation which 
corresponds to the mechanism of R N A  replication described by the 
reactions (41) to (48). It, is of the following explicit form: 

2 1  = fla Yl + hla we + gl~ zl - -  xl (fir e + glr e -t- hlr z2) (71 a) 

22 = fe~ Y'~ + hect Wl + g2d z2 - -  x2 (fete + g2r e + h2r Zl ) (71b) 

Yl = f l r x l  e - - y 1  (flc~ + ]c2) (71 c) 

Y2 = fer x2 e --Ye (f2~ + ]cl) (71 d) 

Zl = h2dwl + glrXl e Zl (herx2 + g l d )  (71e) 

z~ = hlg we + g.~r x2 e - -  z2 ( hlr xl + tea) (71f) 

Wl = ]c2 Yl q- her x2 Zl - -  ]g2d Wl (71 g) 

we = / q  Y2 + hlr Xl z2 - -  hld We (71 h) 

=f l4Y l  + f2eY2 +glgZl +gegz2 e(f lrxl  +~2rXe +glrXl  + gerx2) (71i) 

Additionally, we note tha t  the time dependence of total  concentra- 
tions is described by the following, fairly simple expressions: 

~0 =/Cl y2 (72 a) 

~c 0 = k2y I (72b) 

and 

6 = 0 (72 c) 

The very last equation is self-evident since enzyme molecules are 
neither synthesized anew nor degrated and hence their total  number  is 
conserved during the reactions (41) to (48). Similarly, we can easily 
visualize equations (72 a) and (72 b): polynucleotide synthesis accord- 
ing to our mechanism occurs exclusively through the reactions (47) and 
(48). In these two processes the rates are proportional to the concen- 
trations of the complexes E - I  2 and E-I1, i.e. Y2 and Yl respectively. 

Numerical integration of the differential equation (71) can be 
pertbrmed by standard Runge-Kut ta  technique without special difficul- 
ty. Some examples are shown in Figs. 7 and 8. In order to simplify the 
forthcoming analysis we started the integration in an equilibrated 
mixture of free molecules and complexes. In this way we skip the 
relaxation towards quasiequil ibrium--the process corresponding to X 1 

in section 2. Let  us consider now the solution curves obtained thereby as 
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Fig. 7. Numer ica l  i n t eg ra t ion  of equa t ion  (71). The  ra t e  cons t an t s  chosen are:  
fir =fle~ =f~r =f2d = glr = gld = g2T =g2a = hlr = hid = t~r = h2a = 1(}3. For  the  
i r revers ible  s tep we use A: /~1 = /~2 = 0.1, B:  /~1 = ] g 9  = 10 and  (I: /c 1 = k2 = 100. 
In i t i a l  concen t ra t ions :  x ° = x ° = 10 a, e0 = 1. T h e  i n t eg ra t i on  s ta r t s  f rom an  
equ i l ib ra ted  mix tu r e  of complexes and  free maeromolecules .  This  case 
corresponds  to a choice of equ i l ib r ium cons t an t s  descr ibed in Fig. 3. No te  t h a t  
the  g raphs  in A and  B are a lmos t  ident ica l  except  a s t r e t ch  in the  t ime  axis! 

f u n c t i o n a l s  o f  t h e  r a t e  c o n s t a n t s  fo r  t h e  i r r e v e r s i b l e  r e a c t i o n  s t e p s ,  kl  

a n d / c  2. F o r  t h e  s a k e  o f  s i m p l i c i t y  we  a s s u m e  t h a t  t h e s e  t w o  c o n s t a n t s  

a r e  e q u a l  : #1 =/c2 = / c .  T h e n ,  t h e  s o l u t i o n  c u r v e s  fo r  a g i v e n  se t  of  r a t e  

c o n s t a n t s  fo r  t h e  r e v e r s i b l e  r e a c t i o n s  d e p e n d  o n  a s ing le  p a r a m e t e r , / c ,  

on ly .  T h e  t w o  d i f f e r e n t  cases  s t u d i e d  in  s o m e  d e t a i l  h e r e  c o r r e s p o n d  t o  

t h e  e q u i l i b r i a  i n v e s t i g a t e d  p r e v i o u s l y  (F igs .  3 a n d  5). 
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Fig. 8. Numer ica l  i n t eg ra t ion  of equa t ion  (71). The  ra t e  cons t an t s  chosen are:  
f i r  = glr  = l~r  = 100,  f2r  = g2r = h lr  = 1000, f l a  = g~a = l~d  = f2a  = gea = t~.a = 10. 
For  the  i r reversible  s tep we use A: kl = ] c 2 =  10 -2 , B:  k 1 = ] c  2 =  1 and  C: 
kl = ks = 10. In i t i a l  concen t ra t ions :  x 1 = x 2 = m , e0 = t. The  in t eg ra t ion  
s ta r t s  f rom an  equi l ib ra ted  m i x t u r e  of complexes  and  free macromoleeules .  
This  case corresponds  to a choice of equ i l ib r ium cons tan t s  descr ibed in Fig. 5. 
No te  t h a t  the  g raphs  in A and  B are a lmos t  ident ical  except  a s t r e t ch  in the  

t ime  axis ! 

A t  low v a l u e s  of  ]c w e  o b s e r v e  t h a t  a c h a n g e  in  k l e a d s  t o  a c h a n g e  in  

t h e  t i m e  a x i s  on ly .  T h e  c o n c e n t r a t i o n s  o f  t h e  m o l e c u l a r  spec ies  p r e s e n t  

a t  a g i v e n  t i m e  do  n o t  d e p e n d  o n / c  w h e n  w e  u se  t h e  d i m e n s i o n l e s s  u n i t  

= t" # fo r  t h e  c a l i b r a t i o n  of  t h e  t i m e  ax i s .  W e  s h a l l  see  l a t e r  on,  t h a t  

t h i s  c o n d i t i o n  i m p l i e s  a l so  t h a t  t h e  q u a s i e q u i l i b r i u m  a p p r o x i m a t i o n  is 
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valid. At higher values of k scaling of the t ime axis does no longer lead 
to coincidence of the solution curves for different k values. 

The two examples chosen are characterized by completely different 
distributions of free molecules and complexes during the the replication 
process. Nevertheless, the curves x ° (t) and x ° (t) are of the same general 
class in both  eases (Fig. 9). Provided we s tar t  f rom sufficiently low 
initial concentrations x°(0) and z°(0) we distinguish three phases of 
growth : a phase of exponential  growth, a phase of linear growth and a 
parabolic phase of saturation.  The exponential  phase of growth is 
charaeterized by  excess enzyme: e 0 > z ° and x °. Eve ry  newly synthe- 
sized R N A  molecule instantaneously enters the replication process. In  
the linear phase of growth the concentrat ion of template ,  z ° and x ° 
exceeds tha t  of the enzyme. Consequently, all enzyme molecules are 
engaged in the replication process which then proceeds at  a constant  
rate.  In  the parabolic phase, finally, enzyme react ivat ion determines 
the ra te  of RNA-synthesis. These three phases have been observed in 
vitro in experimental  studies on the QB-bacteriophage RNA--speeific 
R N A  repliease system. For  fur ther  details see 4, a short  and easy to read 
version has been published recently 14. 

Now, we shall apply  the quasiequilibrium approximat ion  to our 
example  of a many-s tep  reaction. Thereby we assume tha t  RNA-  
polymerizat ion is so slow tha t  the equilibrium between different 
complexes and free molecules is hardly disturbed by  the progress of 
replication. For  this purpose we use equations (72 a) and (72b). The 
concentrations of the reproduct ive complexes E '  11 and E '  12, Yl and Y2, 
which enter the differential equat ion are calculated at  equilibrium. For  
this goal we make use of the formalism described in the previous 
section. Numerical  integrat ion of equation (72 a, b) is s t raight  forward. 
At each discrete step the equilibrium concentrat ion are evaluated anew. 
In  this way we obtained solution curves for our two test  examples (Fig. 
10). These curves when plot ted against  dimensionless t ime units 
(~ = t'/c) coincide with those obtained by  direct integrat ion at  the limit 
of low values of/c. This finding can be verified easily by  inspection of 
equations (72 a) and (72 b) when we assume/c 1 =/c2 = ]c: 

and 

dx° dx° dx° 
- k y 2  ~ - - Y 2  

dt kdt dr 

d z ° dz  ° dx ° 
- k y l ~  - - - - y l w i t h v = t ' k  

dt kdt dz 

Indeed, we see tha t  the quasiequilibrium approximat ion  is valid 
over a wide range of rate  constants.  
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Fig. 9. Numerica l  integrat ion of ecluation0(71 ). The graphs show the t ime 
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described in Fig. 8 with k 1 = It2 = 1. Note  tha t  the  curves can be subdivided in 

three phases of growth:  exponential ,  l inear and parabolic 

£ 

' t 1 /  J 
Xl ~ I I  XI 

2 

0 0 . 2 .  . . . . . .  
0.1 0.2 0.3 0.4 0 0.1 02 0.3 0.4 05 0.6 0:7 

A B 
Fig. 10. Numerical  integrat ion of equat ion (72) under the condit ion of 
quasiequilibrium. A corresponds to the conditions described in Figs. 3 and 7, B 
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wi th  7 A and 7 B and tha t  plot  B is almost  identical with 8 A and 8 B 



262 Brigitte Gassner and P. Schuster: 

6. Conclusion 

The simplified many-s tep  mechanism of RNA-repl icat ion intro- 
duced in Fig. 1 reproduces the experimental  results 4 al though the 
polymerizat ion process is described only as a single, over all reaction 
step. At excess of low molecular weight compounds,  A T P ,  UTP,  GTP 
and CTP,  three phases of growth behaviour,  namely  exponential,  linear 
and parabolic growth, of total  R N A  concentrat ion are observed, if we 
go from low to high R N A  concentration. 

In  order to s tudy complex m a n y  step mechanisms approximat ions  
are inevitable. The concept of a fast  pre-equilibrium preceding a slow 
reaction step, called quasiequilibrium approximat ion  appears  to be 
appropr ia te  to describe R N A  polymerization.  The quasiequilibrium 
approximat ion  is a s tandard method of analysis in relaxation kinetics 7 
where one studies per definitionem the approach towards the equili- 
br ium state. By means of simple consecutive first order reactions we 
were able to demonst ra te  tha t  the quasiequilibrium approach can be 
extended to open, in part icular  to exponential ly growing systems. 
Application of the quasiequilibrium to a mechanism of RNA-replica- 
tion (Fig. 1) shows tha t  this approach is valid over a wide range of rate  
constants.  

The studies presented here were performed on the unconstrained 
system. This means tha t  we assumed the existence of an inexhaustible 
reservoir of nucleoside t r iphosphates  (ATP ,  UTP,  GTP and CTP).  
These conditions are approximate ly  fulfilled by the experimental  setup 
used in most  investigations 3-a. There are, however, other equally 
impor tan t  conditions like those encountered in flow reactorsq They can 
be described properly by constraints acting on the system growing 
without  limits s. Invest igat ions on the val idi ty of the quasiequilibrium 
approximat ion  in open systems with constraints will be subject of a 
forthcoming paper. 
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