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Model Studies on RN A-Replication I. **

The Quasiequilibrium Assumption and the Analysis of a
Simplified Mechanism
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A simplified mechanism of RN A4-replication by a specific polymerase is
analysed by direct numerical integration and by means of the “‘quasiequili-
brium approximation”. The quasiequilibrium approximation is formulated in
precise mathematical terms for three simple, two step reactions which describe
approach towards equilibrium, irreversible transformation and unlimited
growth.

(Keywords: Polymerization kinetics; Quasiequilibrium; RN A-replication)

Modelluntersuchungen zur RNA-Replikation, {. Annahme ecines Quasigleich-
gewichts und Analyse eines vereinfachten Mechamismus

Ein vereinfachter Mechanismus der RN 4-Replikation durch eine spezifi-
sche Polymerase wird durch direkte numerische Integration und mit Hilfe der
Annahme von ,.Quasigleichgewicht* analysiert. Die Quasigleichgewichtsan-
nahme wird an Hand von drei Beispielen einfacher Zweistufenreaktionen
mathematisch definiert. Die drei Beispiele beschreiben: (1) die Anniherung an
den Gleichgewichtszustand, (2) den irreversiblen Abbau und (3) das unbe-
schrankte Wachstum einer Verbindung.

1. Introduction

Polynucleotide replication—in vitro and in wivo—is an enormously
complicated many step polymerization process. Commonly, two
catalysts, an enzyme and a polynucleotide template are involved *%#,

#* Dedicated to Prof. Dr. @. Kainz on the occasion of his 60th birthday.

### Exceptions of this rule are enzyme-free template induced oligonucleo-

tide synthesis! and template-free enzyme catalyzed “de movo” RNA syn-
thesis? 4,

16*
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Despite the complexity of the problem the first extensive kinetic
studies were reported more than ten years ago already by Spiegelman®.
In his investigations ENA of the bacteriophage @8 and the template
specific enzyme @8 EN A polymerase were used. More recently, system-
atic kinetic studies were performed on the replication of synthetic
polynucleotides—poly (A), poly (U) polymerized by ENA polymerase
from E. coli in a stirred flow reactort—as well as on the @8 system3.4.
These kinetic investigations are essentially consistent with a simplified
many step mechanism (Fig. 1) which will be the subject of the analysis
reported here.
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Fig. 1. A cyclic mechanism of RN 4 replication

The mechanism of RN A4 replication shown in Fig. 1 consists of two
classes of reactions: (1) the binding of polynucleotides to proteins or
polynucleotide-protein complexes and the dissociation of these poly-
nucleotide-protein-complexes and (2) the polymerization process as
such. All reactions of class (1) are considered to be reversible whereas
the reactions of class (2) are assumed to occur irreversibly for practical
purposes. This condition is very well fulfilled in realistic biological
systems and in testtube experiments when the concentration of pyro-
phosphate is sufficiently small to prevent RN A degradation by pyro-
phosphorolysis.

At the same time the investigations reported here aim towards a
second goal: the proposal and test of an approximative analysis of
complex many-step reaction mechanisms. This procedure which we call
characteristicly “quasiequilibrium approximation” is not new. It has
been used frequently in chemical relaxation kinetics? and is based on
the assumption that some reaction steps proceed at faster rates than
the others. Recently, the quasiequilibrium approximation has been
applied also to autocatalytically growing systemss9. In this paper we
supplement a mathematical analysis which justifies the generalization
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of the approximation to irreversible reaction steps and to conditions
where no stationary states exist. In a way the quasiequilibrium
approximation is complementary to the steady state approximation
which was analysed recently by Noyesl®. He proposed a very general
procedure which allows to check the validity of the steady state
assumption in complex many-step reaction mechanisms. This approxi-
mation is based on the assumption that reaction intermediates are
present at small and practically constant concentrations. Clearly, this
method cannot be applied to autocatalytically growing systems in
which all components including the intermediates grow.

2. The Quasiequilibrium Approximation

In this section we shall introduce and study the quasiequilibrium
approximation by means of three exactly solvable examples.

2.1. Approach Towards Equilibrium

We start with two consecutive first order reactions:

k k
A= B2X (1)
k21 k32

Following the analysis by Higen and DeMoaeyer” we introduce
deviations from equilibrium concentrations as variables «, 8 and
{([Al =@, [B] =5, [X] =2 and hence the conservation relation
a+ b+ x = ¢y = const. holds):

x=a—a,=b—band { =27 (2)

From mass conservation we obtain « + 3+ = 0. The equilibrium
concentrations are denoted by bars:

_ i) - Ky K, Ky
a= ;b=

, andz = —————
\+ K, + KK, 1+K, + KK, 1+ K, + KK,

(3)
The equilibrium constants are defined in conventional manner as
Ky = kipfksy and Ky = ky/ks, (4)

The dynamics of the system is described by the linear differential
equation

da
d—:“:*(/ﬁz“‘km)“‘km: (5a)
t
dg .
=T = —kpgoa— (koz + ksp) L (5b)

T
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which can be written most conveniently in vector notation
y=4dy (5)

Herein y is a column vector (o, {) and A4 the 2 x 2 matrix.

4= <—le — ez >
Vk23 ATzil .

For convenience we introduce relaxation times for the individual
reaction steps

T O s e A (6)
The solution curves of (5) are of the general form
o (t) = ¢y €™ + crp 0™ (Ta)
() = ey e +cpp ™ (7D)
The reciprocal time constants ,, %, are simply the eigenvalues of 4.
In order to calculate the coefficients ¢;; we need the eigenvectors of A

and the initial conditions « (0) and ¢ (0). Eigenvalues and eigenvectors
are determined by the matrix equation

AU=UAor AN'=U-140, (8)
where A is a diagonal matrix containing the eigenvalues
A= (1 0)
0 2
and U contains the corresponding eigenvectors of 4 as columns
U= (uu 7/L12>
Uz1 Yo
Now, we are in a position to write down an expression for the

coefficients ¢y

¢5 = ug LU ) 2(0) + (U1)24(0)} (9)
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The elements of the inverse matrix of U are simply given by

Uoo U1
71— A A
v (10)
I
A A

with A = ujug —upotty;. Without losing generality we may put
w11 = Uy = 1 and derive the following expressions for the coefficients of
equation (7):

1
oy ﬁ{“ (0) —w2L(0)} (9a)
T U Uy
1
Cp = {—un «(0) + L(0)} (9b)
L —upo up;
Ug
o = ————{x(0)—u{(0)} (9e)
1 — g0 Upy
1
2 =T {—uz 2 (0) +2(0)} (9d)
Uy Uy

In practice the eigenvalues of 4 are obtained as the roots of a
quadratic equation:

7\1,224 T11+721i<’f1 1*’52 1) 1+_1—_12 (11)
2 (ty =72 )

The eigenvectors are calculated conveniently from the equations

kog + kaa + A
gy = — 23 ksz 2 (124)
23

k12 + k21 + }\1
k21

Uop =

(12b)

Now, we apply the quasiequilibrium approximation and assume
that one reaction step, let us say the step A =B proceeds much faster
than the other. Accordingly, we have

k2, ka1 > kog, kge and hence 771 > 72_1.
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Then, the eigenvalues of 4 according to equation (11) are close to*

kos K
Q _ —1 Q _ 23 1
AW=—< and Ay = — +k 13
i 1 2 (1 X, 32> (13)
and the corresponding eigenvectors are given by
1
1 —
9= 1+ K, (14)
\0 1
The solution curves of (5) are of the form
a9 (t) = « (0) - exp (W%1)— ! 2(0)-exp (2 ¥t) (15a)
YO+ K 2
and
)=o) expfy) (15D)

Equations (13) to (15) simply express the fact that in accord with
our assumptions the process A =B occurs instantaneously and is at
quasiequilibrium when reaction B ==X progresses.

The establishment of quasiequilibrium can be verified by a straight
forward calculation of the ratio

«(0)exp (0 98) + = £(0)exp 221)

0 () T ?

“Q(t) =m<1+°‘Q(t >: Q Q (16)
« (0) exp (A t)—l o C(0)exp (rg?)

For ¢t > I)\?|*1 we can neglect the first terms in numerator and
denominator and find
87(t)

t> Y 1=" =K 16
>|1| :>0(Q(t) 1 (16a)

Thus, the quotient g/« becomes independent of initial conditions
and approaches K, fort > |)\?| —1, Tt stays then at this value during the

* By the superseript “@Q” we denote the results obtained within the frame
of the quasiequilibrium approximation.
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approach towards final equilibrium which oceurs exponentially with the
time constant Mgl*l (we verify immediately that 8/a'= K, implies
b/a = Kl)

What happens if the quasiequilibrium condition is not fulfilled
perfectly but still |3 | > |2 holds? By means of equations (7), (9) and
(12) we find

8 (¢ +
t>|?\1|*1:>L(—)=" ko + o

T (17)
a (t) kog + k3o + 29

Thus B/« and, hence, also bja approach a constant value as before,
but this value differs from K,. We shall come back to this question
when we discuss the next example (section 2.2).

2.2. Irreversible Consecutive Step

In the second example we consider the slower reaction step to be
irreversible:

53
—
()

k
A B> X (18)

=)

1
Formally, this reaction system is obtained from the previous
example in the limit k3, — 0 (and by putting kyg = k). Thus a (¢) and b (¢)
do not approach some finite equilibrium value but vanish at infinite

time
lim a=0, lim =0 and lim » =¢ (19)

t— o t— t—> 20

By analogy with the previous example we define new variables:
a=a,3=band {=2—c¢ (20)

The differential equation is of the same type as (5) with a matrix 4

defined by
—1
-_— Tl i kzl
A= 21
S o
The eigenvalues of A in this example are

Ny ke k)a/ 1+ 4 Ry 22
12T T T + (7} ) Ay (22)
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and the coefficients of the eigenvectors are given by

i I+ g
l] = TTl + 7\1 1 k (23)

kZl

Applying the quasiequilibrium approximation for A =B to the two-
step mechanisms. (18) we find

kK

9 _ —1 Q _
W= —=x7"and A? = 24
{ 2 K1 (24)

(since we have just one equilibrium constant in this example we drop
the index: K = kjp/ks). The eigenvectors are the same as in the
previous example

1 1
U@ = 1+ K (25)
0 1

and, accordingly, the solution curves in this case are indentical with
those given in equation (15).

In order to study the approach towards a possibly existing quasi-
equilibrium we define a time dependent ratio of concentrations

R(t)=wzwz—(l+w> (26)
a(t) olf) o (£)

Under the assumption of the quasiequilibrium approximation this
ratio is given precisely by equation (16). Thus, for times substantially
longer than the reciprocal first eigenvalue, ¢3> |>\?| —1, the ratio
approaches exactly the equilibrium constant K :

bt *
t>|k?|*13v(—)=K (27)

a(l)

Let us consider now the complete system (18). We may still assume
that the two eigenvalues ), and »; are substantially different. The ratio
of concentrations, b/a, can be expressed in most general form by the
expression

(en + 021)ew + (12 + sz)exzt

C11 eht + C19 e)\zt

E(t)=— (28)
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At time long enough,i » |3 |1, R (¢) approaches a constant value
(K) which is independent of initial conditions:

Ao
k42

- 5 + € 1
t>lm"1:>R<t>=K:~M:{u;): (29)

C12 U1

K, however, need not coincide with the true equilibrium constant K.
We may call K therefore an effective or quasiequilibrium constant.

— . } e p——t—> k

10 20
Fig. 2. The dependence of the effective equilibrium constant K on the rate
konstant k. We show two examples of simple two-step mechanisms as analysed
in section 2.2 and 2.3: ———— (full line), the exponentially growing system
(32) and its linearization according to equation (40) and ———— (broken
line), the irreversibly decaying system (18), the linearization of which is
described in equation (31). For k—0 the effective equilibrium constant
converges smoothly towards the true value of K

Indeed, we find a systematic deviation towards smaller values, K < K,
with increasing values of the rate constant k (Fig. 2). This finding can
be verified analytically : We use a power sevies expansion for the square
root in equation (22) and collect all terms up to the order IcQ/F.TQ. For the
eigenvalues »; we obtain

A K_( k+k kz) 30
Tk \ ot (30)
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which inserted into (29) yields

- TTZ“‘]C]CZJ_ k
"L'l +kk'12 ’L'l

For small values of k the effective equilibrium constant K thus
decreases linearly with the ratio k/r; ' which can be verified easily by
means of Fig. 2.

We have seen that the concept of a quasiequilibrium can be
extended to mechanisms containing irreversible reaction steps. Then,
the concentrations of reactants involved in the quasiequilibrium soon
reach constant ratios and decrease synchronously. In case of the simple
two-step mechanism it was possible to derive an analytical expression
for the effective equilibrium constant K which converges asymptoti-
cally to the true constant K at vanishing values of k.

2.3. Exponentially Growing System

In our third example we make an attempt to generalize the concept
of a quasiequilibrium to an autocatalytically growing system. The most
simple example of this type consists of a reversible first order reaction
superimposed by catalytic action of B on the formation of A:

k
AZB (32a)

k21

k
B+X — A+B (32b)

We assume pseudo first order conditions for reaction (32b); this
means that the concentration of X is constant due to some buffering
mechanism. For short we can write:

=

A =B (32)

21

k

5

In this simple unconstrained reaction the concentrations a (f) and
b (t) grow without limit. They are determined by the following linear
differential equation:

a = iklza + (kzl + k)b (33 a:)

b = ]Clza—"kglb (33b)
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It is again of the same type as equation (5). The matrix 4 in this

case is defined by
4= <k12 kgy + k)
kg —ky (33¢)

The eigenvalues of 4 by the same token are obtained as the roots of
a quadratic equation

1 Al k
7\1’2=~§Tll{li 1+ 32} (34)

T

For k>0 we have always one positive and one negative root. This
means that the differential equation is characterized by one exponen-
tially decreasing and one exponentially growing mode. The correspond-
ing eigenvectors are given by the matrix

1 kit
U=\|lkp+n o (35)
oy +k 1

We may apply the quasiequilibrium approximation for A=B to
our mechanism and obtain

K
2 =-—='and x?:kT ' (36)

U9 = K (37)
—11

By a straight forward calculation we can verify that the ratio b/a
converges to the equilibrium constant K. The approximation is good
for periods longer than the reciprocal first eigenvalue:

b
t>|)\?|—1:>£=1( (38)
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As in the previous example we release the quasiequilibrium approxi-
mation. The second eigenvalue up to terms of the order kz/‘rTQ is given

A <l€ k : > 39
2 = K 1 12 ‘1 9 ( )

As in the foregoing case we can define and calculate an effective
equilibrium constant

bit)
> | te>—=K

a(t)

i

k
K<1K - +> (40)

T

Thus, K decreases linearly with the ratio k K /v for small values of
k which again can be easily verified by inspection of Fig. 2. Note, that
the tangent of this linear dependence is different from that in the
preceding example by a factor K.

It is of a certain importance to stress the fact that the analysis of the
growing system is very general. The ratio b/a becomes constant in any
case: since 2, and ), are of opposite sign the contribution of the second
eigenvector will always outweigh that of the first at times longer that
the period which is necessary for almost complete decay of the first
mode. Again we were able to derive an analytical expression for the
effective equilibrium constant K, which represents this constant ratio
bja. K converges asymptotically to the value of the true constant K for
vanishing k.

The procedure described here can be extended to more complex
many step equilibria preceding a slow reaction step. The results
obtained thereby will be reported elsewherell. A specific example of a
successful application of the quasiequilibrium approximation to a
complex many step mechanism is described in the forthcoming sections.

3. A Mechanism of RN A Replication

The simplified mechanism of ENA replication which will be an-
alysed now is shown schematicly in Fig. 1. Accordingly we distinguish
free RNA molecules—plus and minus strand denoted by I, and I,
respectively—free enzyme molecules E and various polynucleotide
protein complexes. In particular, we have the complexes E-1; and E - I,
which are ready for the synthesis of the complementary strands. BN A4
polymerization is considered to be a single, practically irreversible and
slow “over all”’ reaction step. At the end of the polymerization reaction
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a ternary complex, Iy-E-I; or I, - E- I, respectively, is formed. These
ternary complexes are assumed to dissociate in sequence into the
complexesI, - E or I; - E and finally into free enzyme and polynucleotide
molecules. The newly synthesized RN A-molecules leave the ternary
complex firsts. I, - E differs from E-I; as well as I, - E differs from E- 1,
because the 3’ end of the polynucleotide is attached to the enzyme in
E -1, and E -1, whereas the 5’ end is bound in the other two complexes,
I,-E and I -E. The latter two complexes, hence, are not ready for
replication. Enzyme reactivation can occur either via a rearrangement
of the complex—interconversion of 3" and 5" end of the RN A—or via a
dissociative mechanism. We refer to the latter case. For further details
see Ref.4. Thus both polynucleotides have to fall off before the enzyme
can start RN A4 polymerization anew.

The individual reaction step as well as the symbols used for the rate
and equilibrium constants are:

7

L+E = BT, Flz& (41)
f fld
1d
7

L+E & B-1,; F2=@ (42)
7 f2d
2d
glr 917

L+E=1E  ¢=2 (43)
» J1a
Yor Gor

L+E = 1L-BE;, G,=2 (44)
Uy Joa
h h

L E+L = 1,E-T,;  H =L (45)
B g
1d
h h
L-E+ 1L ér I-E-1; szﬁ (46)
A hog
2d,
4 k

E-L+ Y WA, 3 I,'E-L (47)

r=1
SICTE
E'Il"" Z V7\ A;\—) Iz'E'Il (4:8)

A=1
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The last two reactions are assumed to proceed irreversibly. A,
»=1,..., 4, are the four nucleoside triphosphates, ATP, UTP, GTP
and OTP, v{! and v*) are the corresponding stoichiometric coefficients.
We assume that the concentrations of nucleoside triphosphates are
buffered and hence, they do not enter as variables into the rate
equations.

For the variable concentrations of the individual molecular species
we use:

[L]=, [L]=x, [E]=e (49)
[E-L]l=u, [E-L]l=y, I, E]=2,[L-E]j=% (50)
[L-E-Ll=w, [ E-LL]=w, (61)

Additionally, we define the following total concentrations:

x?=x1+y1+zl+w1+w2 : (52)
XY=y + Yy + 25+ Wy + Wy (53)
60=€+y1+y2+21+22+wl+w2 (54)

4. Analysis of the Equilibrium Between the Free Macromolecules and
Complexes

In order to study the equilibrium of complex formation we put
ki =k =0 and investigate the system of nine variables under the
condition

== =h=h=h=w=wp=6=0 (55)

From (55) we obtain six linearly independent equations

h=F e (56)
Go=FyZye (57)
5 =G5, (58)
2 =078 (59)
W =Hy%% (60)
Wy =H,2,% (61)

We use them together with the three conservation laws (52) to (54)
to evaluate the nine equilibrium concentrations Z;, Zs, ¥y, ¥, Z1, 2o, W1,
iy, and 2 as functions of the total concentrations x(l), xg and ¢;. Thereby,
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we apply a combined analytical and numerical approach used previous-
ly for simple two step equilibrial2.
Successive elimination of variables somewhat tedious but straight
forward leads to two equivalent equations of fifth degreel3:
5]+ a4 + 05T, + 0T+ Ty + ag = 0 (62)
and

Herein, the coefficients are functions of the three total concen-
trations and the following three combinations of equilibrium constants

Note, that the coefficients b, can be obtained from a;, £k =0,..., 5,

by substitution of x(l), xg, A and B for xg, x‘l), B and A and vice versa.

ay = (xVB)2 and by = (x94)2 (67 a)
a =2V {B[aY(AB+2T) + 23(AB—T)—ey (AB+T)+ A—2B]—1T}

and (67Db)

by =20{A[2Y(AB—T)+2YAB+2T)—e(AB+T)—2A+ B]—T}
ay =2 [2)T(T+2A4B)—eT(T'+3AB)+ AB(A—2B)—T (A +4B)] +
+25[(eg—2NT + B](T—AB) +
+eglegABT +AB(B—A)+T (4 +B)]+
+BB—A)+T

and (67 c)

by = 2l [(eg—a)T + AJ(T— AB) +
+a[2dT (T +2AB)—e¢T(T+3AB)—AB(2A—B)—T (4 A+ B)] +
+eg[egABT + AB(A—B)+ T (4 + B)] +
+4(A—B)+T

ag =2 [(z)—2e) AT —2(T+2AB)]T +
+a2)T (T—AB)+ ey T (e AT +T +3AB) +
+AB(B—A)+T(A4+2B)

17 Monatshefte fiir Chemie, Vol. 113/3
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and (67d)

by =x§T(T—AB)+
+ao[(x9—2e) BT —2(T +2ABT +
+eT (BT +T+3AB)+ABA—B)+T 24+ B)

ay=[(eg—2)2AT + T +2AB]IT
and (67e)
by=[(eg—axN2BT +T+2AB]T
as; = AT? and by = BT? (671)

The conventional method of evaluation—calculate either Z; from
equation (62) or %, from (63) and determine the remaining variables
from equations (56) to (61) as well as (52) to (54)—fails here because of
numerical difficulties. The equation

.7/'2 B (eo_xg + 5’32) - (.'E(Q)-*ﬁ_'fg)

A (@) — 7 T (6o — 29+ %)

(68)

.731:

and the corresponding equation for Z, are particularly ill-conditioned in
many cases. The generally applicable formalism which we used in our
calculations consists in a different strategy: all roots of both equations
(62) and (63) are computed. Solutions for & —a;®, k=1,...,5 — are
assigned to the corresponding roots for x; by means of the relation.

0 (k) O_x(k)

— x
U BaalPry=@w =2 (A aPT) k=15 (69)

(
x1 x2

Each correctly assigned pair (z{*), z¥) is characterized by a certain
value Q®). If Q) is the same for two pairs the unique, final assignment
is made with the aid of the equation

21+ 2P 4+ 2P B+aPa®T)—
— P+ 2P A+ 2P B+ B2 T —eg(B+2PT]=0. (70

Equilibrium is unique. Hence, there is only one physically meaning-
ful solution which fulfils the condition that all nine concentrations are
positive:

73, 20,2>0,7,>0,9=0,%>0,% 20, =0, % >0 and & > 0.
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Fig. 3. The equilibrium mixtures of complexes and free macromolecules
according to equations (49)-(61). The values of the individual equilibrium
constants are: Fy = Fy =G, =0y = H; = Hy, =1, We plot relative concen-
trations, e.g. éfey, 71/ep, Faley ebe. or y'cl/x(l), g—/l/x? ete. or iz/xg, g'/z/:cg ete.
respectively. The conservation relations (52) to (54) enable us to sum up all
relative values yielding 1. Each equilibrium concentration is shown as the
vertical distance between two plotted lines. The total concentrations applied
are A: x?—xg—l 1073 < ¢y < 105, B: x(l)—eo-l 1073 <ey <105 and C:
xg =¢ =1, 10-3 <x1 < 105. Due to the particular choice of the equilibrium
constants (equal to unity) all complexes are present at comparable amounts.
Note that the plots against x(l) and xg become identical in case we interchange
the indices “1” and “2”
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Kal
o
Kn/

2 1 Salzg!

%, Z,(Z,)

Y, —

2 v,

Vi W
W e L
! LY, ()

[gg EO 0 ng X?(Xg)
-2 -1 0 1 2 3 [ -2 -1 0 1 2 3 [
A B

Fig. 4. The equilibrium mixtures of complexes and free macromolecules
according to equations (49)-(61). The values of the individual equilibrium
constants are: Fy = Fy = G} = (g = H; = Hy = 10® (for a description of the
plots see Fig. 3). The total concentrations apglied are A: x(l) = xg =1,
10383 <e< 1P and B: x, (:c(l)) =1,¢=3,1038< x(l)(xz) < 105 (we make use of the
fact that the plots against x; and x4 are identical in case we interchange the
indices “1” and ““2” since F, = F,, Gy = G5 and H; = H,, and save the second
sketch). Due to the high values of the equilibrium constants all enzyme is
bound in the ternary complexes at excess polynucleotide concentrations. The
same applies vice versa for the polynucleotides at excess enzyme concentration.
Here we find binary and ternary complexes at comparable amounts

These relations are used to pick out the equilibrium state in the
actual numerical computations.

Some characteristic examples of equilibrium mixtures of polynue-
leotides, enzyme and their complexes are shown in the Figs. 3 to 6. In
our first example all equilibrium constants are chosen equal unity*.
Hence, all molecular species are present in equal amounts when the
total concentrations are low and 2% = 23, The different graphs in Fig. 3
can be interpreted easily by the influence of excess E, I} or I on
complex formation. Example 2 (Fig. 4) differs from the first case by
larger but still equal equilibrium constants: F,=Fy=0G; =
=Gy = H, = Hy =103 {¢1]. Therefore, higher aggregates are strongly
favoured already at low concentrations. In the remaining two examples
we show the influence of different equilibrium constants on the
distribution of molecular species (Figs. 5 and 6).

* Throughout this contribution we use arbitary concentration [c] and time
units [£]. According to equations (41) to (48) all equilibrium constants are of
dimension [c-1], all recombination rate constants of dimension [t~1¢1], all
dissociation rate constants as well as k; and ky of dimension [#1].
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Fig. 5. The equilibrium mixtures of complexes and free macromolecules
according to equations (49)-(61). The values of the individual equilibrium
constants are: F; = G = Hy = 10 and Fy = Gy = H; = 100, i.e. all equilibrium
constants referring to one particular cyele in Fig. 1, replication of plus or minuas
strand, are chosen equal (for a description of the plots see Fig. 3). The total
concentrations applied are A: x(l) =1, xg =1,103 <e <105, B: xg =1,¢ =3,
103 < x(l) <105 and C: x? =1, ¢ =3, 103< xg < 105. The most important
feature of this case concerns the ratio of the two ternary complexes @ /@, A
straight forward calculation yields &, /is = (G- H)/(Gy " H,) = 102 in our example
Hence we find little I,-E-I; only at equilibrium
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Fig. 6. The equilibrium mixtures of complexes and free macromolecules
according to equations (49)-(61). The values of individual equilibrium constants
are: Fy = Fp =10, Gy =G, =102 and H, = Hy =1 (for a descroptlon of the
plots see Fig. 3). The total concentratlons apphed are A: x{ 5= 100,
1073 < ey < 105, B: xo— 100, x =102, 103 <¢; <105 and C: xz(xl) =102,

ey = 50,1038 < 9 (xg) <10 (for the symmetry between ““1”” and “2”" see Fig. 4).
This choice of equlhbrlum constants disfavours strongly complexes I; - K and
1,-E. Hence, z; and 2, are detectable only under extreme conditions, e.g. B
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5. Analysis of the Growing System

In this section we shall analyse the differential equation which
corresponds to the mechanism of RNA replication described by the
reactions (41) to (48). It is of the following explicit form:

& = fiayn + g + gra— 2 (fire + grre + by ) (71a)
Iy = fog Yo + hog Wy + Gog 2 — %2 (fore + gare + harz) (71b)
= furrie—yi(ha + k) (71c)
o = farxae—y2 (foa + 1) (71d)
4 = hggwy + grrxre—21 (har 22 + 10) (71e)
by = hyqg Wy + Gor X e — 2 (h1r 1 + 2g) (711)
Wy = kg yy + hop a2y — hog w0y (T1g)
Wy = kyys + hyy 1 29— hig o (71h)

)

e=figth +foate T raz + Geate—e (fir @ + for @ + Grr ¥y T Gora) (711

Additionally, we note that the time dependence of total concentra-
tions is described by the following, fairly simple expressions:

i =kyy, (72a)

553 = ko (72b)
and

6 =0 (12¢)

The very last equation is self-evident since enzyme molecules are
neither synthesized anew nor degrated and hence their total number is
conserved during the reactions (41) to (48). Similarly, we can easily
visualize equations (72a) and (72Db): polynucleotide synthesis accord-
ing to our mechanism occurs exclusively through the reactions (47) and
(48). In these two processes the rates are proportional to the concen-
trations of the complexes E-I;, and E-1, i.e. 4, and y; respectively.

Numerical integration of the differential equation (71) can be
performed by standard Runge- Kutta technique without special difficul-
ty. Some examples are shown in Figs. 7 and 8. In order to simplify the
forthcoming analysis we started the integration in an equilibrated
mixture of free molecules and complexes. In this way we skip the
relaxation towards quasiequilibrium—the process corresponding to 3;
in section 2. Let us consider now the solution curves obtained thereby as
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Fig. 7. Numerical integration of equation (71). The rate constants chosen are:
Jir = f1a = for = foa = 1r = 10 = Gar =gou= loy = lng = hgy = hgg = 103. For the
irreversible step we use A: ky = ky = 0.1, B: &k, = &, = 10 and C: %y = ky = 100.
Initial concentrations: x| = xg = 1073, ¢; = 1. The integration starts from an
equilibrated mixture of complexes and free macromolecules. This case
corresponds to a choice of equilibrium constants described in Fig. 3. Note that
the graphs in A and B are almost identical except a stretch in the time axis!

functionals of the rate constants for the irreversible reaction steps, k;
and ky. For the sake of simplicity we assume that these two constants
are equal: k; = ko = k. Then, the solution curves for a given set of rate
constants for the reversible reactions depend on a single parameter, £,
only. The two different cases studied in some detail here correspond to
the equilibria investigated previously (Figs. 3 and 5).
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Fig. 8. Numerical integration of equation (71). The rate constants chosen are:

Jir = g1e = hgr = 100, fo = go, = hy, = 1000, fig = 910 = lug = fou = gog = hog = 10.
For the irreversible step we use A: I%1 = kz =102, B: b=k =1 and C:

ky = ky, = 10. Initial concentrations: z; = xz = 1073, ¢; = 1. The integration

starts from an equilibrated mixture of complexes and free macromolecules.

This case corresponds to a choice of equilibrium constants described in Fig. 5.

Note that the graphs in A and B are almost identical except a stretch in the
time axis!

At low values of k£ we observe that a change in k leads to a change in
the time axis only. The concentrations of the molecular species present
at a given time do not depend on £ when we use the dimensionless unit

= {-k for the calibration of the time axis. We shall see later on, that
this condition implies also that the quasiequilibrium approximation is
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valid. At higher values of k£ scaling of the time axis does no longer lead
to coincidence of the solution curves for different k values.

The two examples chosen are characterized by completely different
distributions of free molecules and complexes during the the replication
process. Nevertheless, the curves x(l) (f) and xg (t) are of the same general
class in both cases (Fig. 9). Provided we start from sufficiently low
initial concentrations xY(0) and xg(O) we distinguish three phases of
growth: a phase of exponential growth, a phase of linear growth and a
parabolic phase of saturation. The exponential phase of growth is
characterized by excess enzyme: ¢ >z! and x5. Every newly synthe-
sized RNV A molecule instantaneously enters the replication process. In
the linear phase of growth the concentration of template, x(l) and x)
exceeds that of the enzyme. Consequently, all enzyme molecules are
engaged in the replication process which then proceeds at a constant
rate. In the parabolic phase, finally, enzyme reactivation determines
the rate of RN A-synthesis. These three phases have been observed in
vitro in experimental studies on the @g-bacteriophage RN A—specific
RN A replicase system. For further details see4, a short and easy to read
version has been published recently14. :

Now, we shall apply the quasiequilibrium approximation to our
example of a many-step reaction. Thereby we assume that ENA-
polymerization is so slow that the equilibrium between different
complexes and free molecules is hardly disturbed by the progress of
replication. For this purpose we use equations (72a) and (72b). The
concentrations of the reproductive complexes E- I, and E- 1, , and s,
which enter the differential equation are calculated at equilibrium. For
this goal we make use of the formalism described in the previous
section. Numerical integration of equation (72 a, b) is straight forward.
At each discrete step the equilibrium concentration are evaluated anew.
In this way we obtained solution curves for our two test examples (Fig.
10). These curves when plotted against dimensionless time units
(z = i k) coincide with those obtained by direct integration at the limit
of low values of k. This finding can be verified easily by inspection of
equations (72a) and (72b) when we assume kb = ky = k:

dx(l) . dx(l) dx(l)
. S g = e = —
at P Thdr T ae P
and
dad dz§  daj
%Zk%:rﬁ:%:ylwithrzt-k

Indeed, we see that the quasiequilibrium approximation is valid
over a wide range of rate constants.
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Fig. 9. Numerical integration of equation (71). The graphs show the time

dependence of total concentrations x; and z,, A corresponds to the conditions

described in Fig. 7 with & = &, = 50 and B corresponds to the conditions

described in Fig. 8 with k; = &k, = 1. Note that the curves can be subdivided in
three phases of growth: exponential, linear and parabolic

0
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Fig. 10. Numerical integration of equation (72) under the condition of
quasiequilibrium. A corresponds to the conditions described in Figs. 3 and 7, B
to the conditions described in Figs. 5 and 8. The time axis is scaled in
dimensionless units t =1¢/k; k = ky = k. Note that plot A is almost identical
with 7A and 7B and that plot B is almost identical with 8 A and 8 B
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6. Conclusion

The simplified many-step mechanism of RN A-replication intro-
duced in Fig. 1 reproduces the experimental results? although the
polymerization process is described only as a single, over all reaction
step. At excess of low molecular weight compounds, ATP, UTP, GTP
and CT P, three phases of growth behaviour, namely exponential, linear
and parabolic growth, of total ENA concentration are observed, if we
go from low to high RN A concentration.

In order to study complex many step mechanisms approximations
are inevitable. The concept of a fast pre-equilibrium preceding a slow
reaction step, called quasiequilibrium approximation appears to be
appropriate to describe RN A4 polymerization. The quasiequilibrium
approximation is a standard method of analysis in relaxation kinetics?
where one studies per definitionem the approach towards the equili-
brium state. By means of simple consecutive first order reactions we
were able to demonstrate that the quasiequilibrium approach can be
extended to open, in particular to exponentially growing systems.
Application of the quasiequilibrium to a mechanism of RN A-replica-
tion (Fig. 1) shows that this approach is valid over a wide range of rate
constants.

The studies presented here were performed on the unconstrained
system. This means that we assumed the existence of an inexhaustible
reservoir of nucleoside triphosphates (ATP, UTP, GTP and CTP).
These conditions are approximately fulfilled by the experimental setup
used in most investigations3—5. There are, however, other equally
important conditions like those encountered in flow reactorsé. They can
be described properly by constraints acting on the system growing
without limits8. Investigations on the validity of the quasiequilibrium
approximation in open systems with constraints will be subject of a
forthcoming paper.
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